Filter by/
Region/  All
Type/  All
Sorted By/  Most Recent

Put​ ​context​ ​at​ ​the​ ​heart​ ​of​ ​social​ ​media​ ​sentiment​ ​analysis

By / / In Insight /
Customers post good and bad opinions of products and services – and they also share witty and sarcastic opinions. All of which have been notoriously difficult for brands to measure. Sentiment​ ​analysis​ ​in​ ​the​ ​social​ ​listening​ ​world​ ​has​ ​not​ ​enjoyed​ ​the​ ​best​ ​of​ ​reputations as a ​lack​ ​of​ ​any​ ​advanced​ ​technology​ ​has​ ​meant​ ​that​ ​accurate​ ​results​ have​ ​depended​ ​on a​ ​process​ ​of​ ​repetitive,​ ​tedious​ ​and​ ​time​-consuming​ ​manual​ ​tagging​ ​of​ ​documents.​ ​As​ ​a result,​ ​many​ ​brands​ ​tend​ ​to​ ​sideline​ ​sentiment​ ​indicators​ ​in​ ​their​ ​reporting.​ ​Now​ ​all​ ​that is​ ​set​ ​to​ ​change, says Richard Sunley. Machines have been learning how to fathom irony . . .
sentiment analysis

Social​ ​sentiment​ ​analysis today

Sometimes​ ​called​ ​opinion​ ​mining,​ sentiment analysis ​is​ ​the​ ​holy​ ​grail​ –​ ​the​ ​most effective​ ​way​ ​to​ ​find​ ​out​ ​what​ ​consumers​ ​think​ ​about​ ​a​ ​brand,​ ​product​ ​or​ ​event,​ ​in​ ​real time.​ ​It​ ​aims​ ​systematically​ ​to​ ​identify​ ​opinions​ ​in​ ​a​ ​document​ ​and​ ​give​ ​it​ ​a​ ​score​ ​on​ ​a scale​ ​of​ ​negative​ ​to​ ​positive.​ ​​ ​Marketers​ ​use​ ​instant​ ​sentiment​ ​data​ ​to​ ​make​ ​campaign adjustments​ ​in​ ​close​ ​to​ ​real-time,​ ​instantly​ ​feeding​ ​negative​ ​reviews​ ​to​ ​product​ ​teams and​ ​solving​ ​major​ ​customer​ ​issues​ ​more​ ​efficiently.There​ ​are​ ​two​ ​main​ ​approaches​ ​in use​ ​today:​ ​sentiment analysis​ ​based​ ​on​ ​keyword​ ​scoring,​ ​and​ ​a​ ​calculation​ ​based​ ​on predefined​ ​categories.

Keyword​ ​scoring​ ​means​ ​you​ ​give​ ​the​ ​word​ ​‘good’​ ​a​ ​positive​ ​score,​ ​the​ ​word​ ​‘bad’ ​a negative​ ​score.​ ​This​ ​approach​ ​has​ ​inherent​ ​flaws​ ​which​ ​some​ ​analysts​ ​try​ ​to​ ​fix​ ​by applying​ ​rules​ ​on​ ​top​ ​of​ ​the​ ​keyword​ ​scoring,​ ​but​ ​the​ ​underlying​ ​problem​ ​remains: keyword​ ​scoring​ ​only​ ​captures​ ​fragments​ ​of​ ​a​ ​message​ ​and​ ​struggles​ ​to​ ​accurately judge​ ​true​ ​meaning.​ ​Keyword​ ​scoring​ ​can​ ​deliver​ ​some​ ​relevant​ ​results,​ ​if​ ​focused​ ​on broad​ ​trends​ ​or​ ​applied​ ​at​ ​scale.​ ​But,​ ​at​ ​a​ ​more​ ​detailed​ ​level,​ ​a​ ​sarcastic​ ​tweet​ ​or​ ​a 13-year-old​ ​calling​ ​a​ ​new​ ​video​ ​game​ ​‘sick’​ ​brings​ ​the​ ​system​ ​to​ ​its​ ​knees.​ ​Because keyword-based​ ​sentiment​ ​technology​ ​can’t​ ​understand​ ​context​ –​ ​only​ ​individual​ ​words​ ​or small​ ​phrases​ ​–​ ​proven​ ​accuracy​ ​levels​ ​generally​ ​range​ ​between​ ​50​ ​to​ ​80%.​ ​This​ ​has led​ ​to​ ​many​ ​brands​ ​sidelining​ ​sentiment​ ​data​ ​in​ ​reports.

The​ ​second​ ​approach​ ​is​ ​based​ ​on​ ​the​ ​idea​ ​that​ ​you​ ​let​ ​the​ ​user​ ​categorise​ ​a​ ​few​ ​dozen results​ ​as​ ​a training​ ​set, ​and​ ​then​ ​let​ ​an​ ​algorithm​ ​use​ ​this​ ​to​ ​make​ ​decisions​ ​for​ ​future results.​ ​Accuracy​ ​for​ ​predefined​ ​categories​ ​is​ ​usually​ ​higher​ ​than​ ​for​ ​keyword​ ​scoring, but​ ​it’s​ ​far​ ​from​ ​perfect.​ ​This​ ​manual​ ​categorisation​ ​requires​ ​a​ ​huge​ ​time​ ​investment​ ​and an​ ​understanding​ ​of​ ​all​ ​topics​ ​that​ ​could​ ​potentially​ ​be​ ​linked​ ​to​ ​your​ ​brand.​ ​Because this​ ​method​ ​works​ ​with​ ​such​ ​narrow​ ​parameters​ ​for​ ​qualifying​ ​results,​ ​it​ ​typically​ ​yields fewer​ ​results​ ​overall.

In​ ​a​ ​third​ ​approach,​ ​some​ ​analysts​ ​prefer​ ​to​ ​bypass​ ​technology​ ​altogether​ ​and​ ​require people​ ​to​ ​code​ ​sentiment.​ ​The​ ​upside​ ​here​ ​is​ ​that​ ​accuracy​ ​is​ ​no​ ​longer​ ​a​ ​problem. People​ ​will​ ​disagree​ ​here​ ​and​ ​there​ ​(language​ ​is​ ​not​ ​an​ ​exact​ ​science),​ ​but​ ​overall results​ ​are​ ​excellent.​ ​The​ ​downside?​ ​On​ ​average,​ ​a​ ​person​ ​can​ ​only​ ​classify​ ​about​ ​100 documents​ ​per​ ​hour.​ ​Brands​ ​can​ ​get​ ​thousands,​ ​even​ ​tens​ ​of​ ​thousands,​ ​of​ ​mentions​ ​a day.

Beyond​ ​issues​ ​of​ ​coding​ ​consistency,​ ​by​ ​the​ ​time​ ​coders​ ​find​ ​the​ ​critical​ ​mention​ ​that matters,​ ​it​ ​might​ ​be​ ​too​ ​late​ ​to​ ​act.​ ​Even​ ​worse,​ ​if​ ​brands​ ​want​ ​to​ ​determine​ ​consumer sentiment​ ​around​ ​certain​ ​products​ ​or​ ​services​ ​for​ ​market​ ​research​ ​or​ ​collect​ ​opinions around​ ​a​ ​trending​ ​topic,​ ​the​ ​substantial​ ​costs​ ​involved​ ​in​ ​securing​ ​timely​ ​results​ ​make this​ ​a​ ​non-starter​ ​for​ ​many​ ​brands.

Technology and sentiment analysis: change​ ​is​ ​in​ ​the​ ​air

For​ ​many​ ​years,​ ​the​ ​industry​ ​has​ ​tried​ ​to​ ​develop​ ​a​ ​social​ ​sentiment​ ​technology​ ​that would​ ​provide​ ​the​ ​accuracy​ ​and​ ​level​ ​of​ ​automation​ ​needed​ ​to​ ​make​ ​sentiment​ ​analysis effective.​ ​Its​ ​time​ ​has​ ​finally​ ​come.

In​ ​a​ ​world​ ​where​ ​customer​ ​centricity​ ​is​ ​increasingly​ ​recognised​ ​as​ ​a​ ​vital​ ​competitive weapon,​ ​sentiment​ ​analysis​ ​has​ ​never​ ​been​ ​more​ ​important​ ​to​ ​get​ ​right.​ ​​Talkwalker​’s​ ​AI technology​ ​based​ ​on​ ​‘deep​ ​learning’ ​–​ ​an​ ​advanced​ ​method​ ​of​ ​training​ ​machines​ ​to learn​ ​–​ ​now​ ​lets​ ​brands​ ​capture​ ​customer​ ​sentiment​ ​with​ ​90%​ ​accuracy.​ ​For​ ​the​ ​first time,​ ​we​ ​can​ ​truly​ ​understand​ ​the​ ​meaning​ ​of​ ​full​ ​sentences.​ ​We​ ​can​ ​accurately determine​ ​customer​ ​attitudes​ ​and​ ​contextual​ ​reactions​ ​in​ ​tweets,​ ​posts​ ​and​ ​articles. Brands​ ​can​ ​use​ ​and​ ​cross​ ​sentiment​ ​indicators​ ​with​ ​a​ ​variety​ ​of​ ​data​ ​to​ ​drive​ ​a​ ​better understanding​ ​of​ ​what​ ​their​ ​customers​ ​are​ ​thinking.​ ​Teams​ ​can​ ​cut​ ​down​ ​on​ ​reaction time.​ ​​Critical​ ​posts​ ​can​ ​be​ ​detected​ ​and​ ​flagged​ ​immediately,​ ​in​ ​real​ ​time.

Looking​ ​beyond​ ​the​ ​post​ ​level,​ ​sentiment​ ​analysis​ ​unlocks​ ​improvements​ ​in​ ​the customer​ ​experience.​ ​In​ ​a​ ​classic​ ​example,​ ​a​ ​client​ ​of​ ​ours​ ​in​ ​the​ ​budget​ ​hotel​ ​sector noticed​ ​a​ ​stream​ ​of​ ​negative​ ​posts​ ​on​ ​social​ ​media.​ ​They​ ​ceased​ ​when​ ​hair​ ​dryers​ ​were installed​ ​across​ ​all​ ​room​ ​categories.

sentiment analysis

Another​ ​client,​ ​a​ ​household​ ​brand,​ ​evaluated​ ​attitudes​ ​towards​ ​kitchen​ ​cleaners​ ​on​ ​the market,​ ​and​ ​was​ ​able​ ​to​ ​see​ ​that​ ​smell​ ​was​ ​one​ ​of​ ​the​ ​most​ ​commonly​ ​disliked​ ​issues. Based​ ​on​ ​this​ ​research,​ ​they​ ​asked​ ​their​ ​R&D​ ​team​ ​to​ ​come​ ​up​ ​with​ ​a​ ​product​ ​they could​ ​market​ ​with​ ​‘great​ ​smell’​ ​as​ ​a​ ​differentiator.

sentiment analysisIn​ ​B2B​ ​too,​ ​clients​ ​operating​ ​in​ ​multiple​ ​markets​ ​or​ ​with​ ​franchise​ ​locations​ ​to manage,​ ​use​ ​sentiment​ ​technology​ ​to​ ​track​ ​opinions​ ​about​ ​suppliers,​ ​local​ ​issues​ ​and branches.​ ​This​ ​can​ ​be​ ​especially​ ​helpful​ ​in​ ​assessing​ ​service​ ​quality​ ​internally.

How​ ​does​ ​AI-powered​ ​sentiment​ ​analysis​ ​work?

Late​ ​last​ ​year,​ ​Talkwalker​ ​were​ ​the​ ​first​ ​social​ ​analysts​ ​to​ ​release​ ​proprietary​ ​image recognition​ ​technology​ ​for​ ​logos,​ ​scenes​ ​and​ ​objects,​ ​covering​ ​a​ ​vast​ ​majority​ ​of​ ​the visual​ ​web,​ ​with​ ​more than​ ​100​ ​million​ ​images​ ​processed​ ​every​ ​day​ ​across​ ​Twitter, Instagram,​ ​Facebook,​ ​online​ ​news​ ​and​ ​other​ ​sources.​ ​We​ ​​quickly​ ​realised​ ​that​ ​we wanted​ ​to​ ​apply​ ​that​ ​knowledge​ ​to​ ​sentiment​ ​technology.​ ​Using​ ​deep​ ​learning​ ​models that​ ​simulate​ ​the​ ​cognitive​ ​functions​ ​of​ ​the​ ​human​ ​brain,​ ​the​ ​technology​ ​now understands​ ​complex​ ​language​ ​patterns​ ​and​ ​entire​ ​sentences, ​and​ ​even​ ​deals​ ​with basic​ ​forms​ ​of​ ​sarcasm​ ​and​ ​irony.

sentiment analysis

While​ ​developing​ ​the​ ​algorithms​ ​that​ ​we​ ​use,​ ​we​ ​researched​ ​their​ ​success​ ​in determining​ ​accuracy.​ ​We​ ​found​ ​that​ ​the​ ​size​ ​of​ ​the​ ​training​ ​correlates​ ​with​ ​the percentage​ ​of​ ​correctly​ ​identified​ ​results.​ ​That​ ​meant​ ​the​ ​team​ ​had​ ​to​ ​classify​ ​tens of​ ​millions​ ​of​ ​results​ ​to​ ​ensure​ ​the​ ​90%​ ​accuracy​ ​rate​ ​the​ ​algorithm​ ​now​ ​delivers.

Where’s​ ​the​ ​technology​ ​headed?

Being​ ​able​ ​to​ ​accurately​ ​classify​ ​sentiment​ ​is​ ​just​ ​the​ ​start.​ ​Benchmarking​ ​brand​ ​health indicators,​ ​supplementing​ ​sentiment​ ​data​ ​with​ ​demographic​ ​information​ ​or​ ​combining​ ​it with​ ​individual​ ​product​ ​features​ ​in​ ​our​ ​platform​ ​is​ ​where​ ​the​ ​real​ ​magic​ ​happens.

Sentiment​ ​technology​ ​is​ ​fast​ ​becoming​ ​a​ ​more​ ​exact​ ​science​ ​than​ ​ever​ ​before.​ ​With​ ​the power​ ​of​ ​millions​ ​of​ ​results,​ ​accurately​ ​classified,​ ​brands​ ​are​ ​now​ ​able​ ​to​ ​take​ ​a​ ​huge step​ ​in​ ​a​ ​new​ ​direction. In​ ​a​ ​single​ ​click,​ ​brands​ ​can​ ​get​ ​the​ ​sentiment​ ​indicators​ ​they need​ ​to​ ​identify,​ ​analyse​ ​and​ ​act​ ​on​ ​insights​ ​to​ ​serve​ ​their​ ​customers​ ​well,​ ​in​ ​real​ ​time.​ ​

Have an opinion on this article? Please join in the discussion: the GMA is a community of data driven marketers and YOUR opinion counts.

Read also:

5 best ways to use social listening for your business

Digging into big data: how deep learning can unlock marketing insights

Richard Sunley
Author: Richard Sunley
UK & Ireland Marketing Lead at Talkwalker | www.talkwalker.com/social-media-analytics

Social media analytics company, Talkwalker, uses cutting-edge technology to provide actionable social media insights through real-time social listening and advanced analytics. Talkwalker helps marketers prove the value of their social efforts and enhances the speed and accuracy of business decision-making. Talkwalker’s social media analytics platform monitors and analyses online conversations on social networks, news websites, blogs, forums and more, in over 187 languages. Its servers process 500 million posts from 150 million websites every day.

Leave your thoughts

Related reading

  • Keep up to date with global best practice in data driven marketing

  • This field is for validation purposes and should be left unchanged.